Supply Concepts

Ryan Safner

ECON 306

Firm's Constrained Optimization

- The Firms (constrained optimization) problem is:

1. Choose: <inputs, output>
2. In order to maximize: <profits>
3. Subject to: <technology>

- We break up the firm's problem into two problems:
- The firm's cost-minimization problem:

1. Choose: <inputs>
2. In order to minimize: <total cost>
3. Subject to: <producing optimal output>

- The firm's profit-maximization problem:

1. Choose: <output>
2. In order to maximize: <profit>

Production \& Firms

- Firms organize production by buying or renting inputs ("factors of production") and transforming them into outputs according to their technology or production function

$$
q=f(k, l)
$$

where $q=$ amount of output, $k=$ amount of capital, and $l=$ amount of labor

- Two time-frames of production:
- Short-run: at least one factor of production is fixed (e.g. \bar{k})
* We can characterize the short-run production function by plugging in the amount of our fixed factor, e.g.

$$
\begin{aligned}
q(l, k) & =l k \\
\bar{k} & =10 \\
q(l, \bar{k}) & =10 l
\end{aligned}
$$

Table 1: Short-run production function with diminishing returns

* The marginal product of an input measures how output changes as one input is added (holding the other(s) constant):

$$
\begin{aligned}
M P_{l} & =\frac{\Delta q}{\Delta l} \\
M P_{k} & =\frac{\Delta q}{\Delta k}
\end{aligned}
$$

- Inputs are often assumed to have diminishing returns: $M P$ is declining (q is increasing at a decreasing rate with respect to each input)
* The average product of an input measures output per unit of input

$$
\begin{aligned}
A P_{l} & =\frac{q}{l} \\
A P_{k} & =\frac{q}{k}
\end{aligned}
$$

- Long-run: all factors are variable

Isocost Lines

- Isocost line: the combinations of inputs that are the same total cost

$$
w l+r k=C
$$

$w=$ price of labor, $r=$ price of capital

- To graph, solve for k :

$$
k=\frac{C}{r}-\frac{w}{r} l
$$

* Vertical intercept: $\frac{C}{r}$
* Horizontal intercept: $\frac{C}{w}$
* Slope: $-\frac{w}{r}$

Figure 1: The Isocost Line

- All points on the line are same total cost
- All points beneath line are lower total cost
- All points above the line are higher total cost
- Change in an input's market price: rotates isocost line
- New intercept for input that changed in price
- New slope
- Slope of isocost line measures the market exchange rate between l and k (their relative prices)

Table 2: How the isocost line changes with input prices

Isoquant Curves

- Isoquant curves link all combinations of inputs that produce the same output

Figure 2: Isoquant curves: $E>A=B=C>D$

- Marginal rate of technical substitution (MRTS): firm's exchange rate between l and k
* $M R T S=$ the slope of the isoquant curve
* Literally: the amount of k given up to obtain 1 more k produce same output
- Marginal products are related to MRTS:

$$
M R T S=\frac{M P_{l}}{M P_{k}}
$$

- Shape \& slopes (MRTS) of isoquant curves:
* Bent vs. straight \Longrightarrow complementarity vs. substitutability between l and k

Always produce at same rate of combination

Always substitute at same rate

Solving the Firm's Cost-Minimization Problem

- Firm chooses combination of l and k to minimize total cost while producing the optimal amount of output
* Expressed mathematically:

$$
\begin{gathered}
\min _{l, k} w l+r k \\
\text { s. t. } q^{*}=f(k, l)
\end{gathered}
$$

* Graphically: optimum is the point of tangency between the lowest isocost line tangent to the (optimal) isoquant

Figure 3: The firm's optimum at point A : isoquant curve is tangent to isocost line

* At the tangency point (A), all of the following are true:
\mid Slope of I.Q. Curve $|=|$ Slope of I.C. Line \mid Slopes are equal

$$
\begin{aligned}
M R T S & =\frac{w}{r} & & \text { Definition of each slope } \\
\frac{M P_{l}}{M P_{k}} & =\frac{w}{r} & & \text { Firm's exchange rate same as market exchange rate } \\
\frac{M P_{l}}{w} & =\frac{M P_{k}}{r} & & \text { Marginal product per } \$ 1 \text { is the same between } l \text { and } k
\end{aligned}
$$

- Equimarginal principle: output is optimized when firm can lower costs no more output by spending $\$ 1$ more/less on either l or k
* Firm is indifferent between using more l or using more k : has no reason to change input decisions!
* If marginal product per dollar were greater for (e.g.) l than for k, could buy more l and lower costs!
- Returns to Scale: technological relationship between scaling all inputs at the same rate and the scale of output
- Constant returns to scale: output scales at the same rate as scaling all inputs
* e.g. doubling all inputs doubles output
- Increasing returns to scale: output scales at a faster rate than scaling all inputs
* e.g. doubling all inputs more-than-doubles output
- Decreasing returns to scale: output scales at a slower rate than scaling all inputs
* e.g. doubling all inputs less-than-doubles output

Supply in Competitive Markets

Costs

- Economic vs. accounting concepts:
- Accounting costs: monetary costs
- Economic (opportunity) costs: value of next best opportunity given up
- Accounting profit: Total revenue minus accounting costs
- Economic profit: Total revenue minus accounting \& economic costs
- Accounting point of view: are you taking in more cash than you are spending
- Economic point of view: are you really making the best use of your resources with your current project (i.e. is there a higher-value use)?
* Implications for society: consumers really best off with you using scarce resources (with other uses) to produce your current product?
- Total cost function $C(q)$ relates total quantity of output q (using optimal combinations of l and k) to the total cost of production C

$$
C(q)=F C+V C(q)
$$

- Fixed Costs FC: costs that do not vary with output
- Average Fixed Costs $A F C(q)$: fixed costs per unit

$$
A F C(q)=\frac{F C}{q}
$$

- Variable Costs $V C(q)$: costs that vary with output
- Average Variable Cost $A V C(q)$: variable cost per unit of output

$$
A V C(q)=\frac{V C}{q}
$$

- Average (Total) Cost $A C(q)$: (total) cost per unit of output

$$
\begin{aligned}
& A C(q)=\frac{T C}{q} \\
& A C(q)=A F C(q)+A V C(q)
\end{aligned}
$$

- Marginal Cost $(M C(q))$: how cost changes with one unit of output

$$
M C(q)=\frac{\Delta C(q)}{\Delta q}
$$

Table 3: Total costs (left) and per-unit costs (right)

- General relationship between average and marginal:
* When $M C(q)>A C(q), \uparrow A C(q)$
* When $M C(q)<A C(q), \downarrow A C(q)$
* When $M C(q)=A C(q), A C(q)$ is minimized
* Same relationship between $M C$ and $A V C$

Figure 4: The relationship between average and marginal

* In the long run, firms can change all factors of production (e.g. can choose k)
- Separate short run average cost curves for each hypothetical amount of k
- In long run, firm chooses k (and associated SRAC curve) to minimize cost at desired output level
- Long run average cost curve "envelopes" the lowest parts of all SRAC curves

Figure 5: The relationship between short and long run average cost curves

* Economies of scale: the economic relationship between how average cost scales with output
- Economies of scale: average costs fall with output
- Diseconomies of scale: average costs rise with output
- Constant economies of scale: costs do not vary with output
- Minimum efficient scale (MES): q with lowest $A C(q)$

Revenues

- Competitive price-taking firm's demand is perfectly elastic at the market-determined price
 Industry

- Total revenue

$$
R(q)=p q
$$

* Average Revenue: revenue per unit (aka price)

$$
A R(q)=p
$$

* Marginal Revenue: how revenues change with one more output

$$
M R(q)=\frac{\Delta R(q)}{\Delta q}
$$

- For a price-taking firm in a competitive market, Demand $=A R(q)=M R(q)=p$

Table 4: Firm's total (left) and per-unit (right) revenues

Profits

- A competitive market:
- Firms' products are perfect substitutes
- Firms are price-takers, none can affect the market price
- Market entry and exit is costless
- Firm chooses profit maximizing quantity q^{*} :

$$
\pi_{\max } \text { at } q^{*} \text { where } M R(q)=M C(q)
$$

Table 5: Finding maximum profits (totals on left, per unit on right)

- Profit is revenues minus costs:

$$
\begin{aligned}
& \pi=R(q)-C(q) \\
& \pi=q[p-A C(q)]
\end{aligned}
$$

- Firm breaks even where $p=A C(q)$
- Firm's break even price is the minimum of $A C(q)$ curve (where $A C(q)=M C(q)$)
- Firm earns losses where $p<A C(q)$
- Short run: firm stays in market
* Firm continues to produce (at a loss) if

$$
p \geq A V C
$$

* Firm shuts down and produces $q^{*}=0$ if

$$
p<A V C
$$

* Firm's shut down price is the minimum of $A V C(q)$ curve (where $A V C(q)=M C(q)$)
- Long run: firm exits market
- Firm's Supply:

Table 6: Firm's Supply in Short Run (left) and Long Run (right)

$$
\begin{aligned}
& \text { Firm's Short Run Inverse Supply }= \begin{cases}p=M C(q) & \text { if } p \geq A V C \\
q=0 & \text { If } p<A V C\end{cases} \\
& \text { Firm's Long Run Inverse Supply }= \begin{cases}p=M C(q) & \text { if } p \geq A C \\
q=0 & \text { If } p<A C\end{cases}
\end{aligned}
$$

- Industry equilibrium:
- If firms earn $\pi>0$ in short run: firms enter over long run
- If firms earn $\pi<0$ in short run: firms exit over long run
- Long run equilibrium: $\pi=0$ at $p=A C(q)=M C(q)$ for all firms!
- Industry supply curve is sum of all firms' marginal cost curves above $A V C_{\text {min }}$

Firm 2

Industry

- Firms may have different cost structures due to economic rents - returns above opportunity cost needed to bring firm online
- A scarce factor of production (e.g. talent, location, intellectual property, political favors, etc)
- Lowers costs for firm relative to other firms
- Other firms willing to bid up price of scarce rent-generating factor (to earn advantage)
- Prices of rent-generating factors get bid up until firm profits fall to zero!
- Owner of scarce factor earns higher income due to economic rents

