1.3 - Preferences

ECON 306 • Microeconomic Analysis • Spring 2023 Ryan Safner
Associate Professor of Economics
, safner@hood.edu
© ryansafner/microS23
© microS23.classes.ryansafner.com

Outline

Preferences

Indifference Curves
Marginal Rate of Substitution
Utility.
Marginal Utility.

Preferences

Preferences I

- Which bundles are preferred over others?

Example: Between two bundles of (x, y) :

$$
a=(4,12) \text { or } b=(6,12)
$$

Preferences II

- We will allow three possible answers:

Preferences II

- We will allow three possible answers:

1. $a \succ b$: (Strictly) prefer a over b

Preferences II

- We will allow three possible answers:

1. $a \succ b$: (Strictly) prefer a over b
2. $a \prec b$: (Strictly) prefer b over a

Preferences II

- We will allow three possible answers:

1. $a \succ b$: (Strictly) prefer a over b
2. $a \prec b$: (Strictly) prefer b over a
3. $a \sim b$: Indifferent between a and b

Preferences II

- We will allow three possible answers:

1. $a \succ b$: (Strictly) prefer a over b
2. $a \prec b$: (Strictly) prefer b over a
3. $a \sim b$: Indifferent between a and b

- Preferences are a list of all such
 comparisons between all bundles

See appendix in today's class page for more.

Indifference Curves

Mapping Preferences Graphically I

- For each bundle, we now have 3 pieces of information:
- amount of x
- amount of y
- preference compared to other bundles
- How to represent this information graphically?

Mapping Preferences Graphically II

- Cartographers have the answer for us
- On a map, contour lines link areas of equal height
- We will use "indifference curves" to link bundles of equal preference

Mapping Preferences Graphically III

3-D "Mount Utility"
2-D Indifference Curve Contours

Indifference Curves: Example

Example: Suppose you are hunting for an apartment. You value both the size of the apartment and the number of friends that live nearby.

Indifference Curves: Example

Example: Suppose you are hunting for an apartment. You value both the size of the apartment and the number of friends that live nearby.

- Apt. A has 1 friend nearby and is 1,200 $f t^{2}$

Indifference Curves: Example

Example: Suppose you are hunting for an apartment. You value both the size of the apartment and the number of friends that live nearby.

- Apt. A has 1 friend nearby and is 1,200 ft t^{2}
- Apts that are larger and/or have more friends $\succ A$

Indifference Curves: Example

Example: Suppose you are hunting for an apartment. You value both the size of the apartment and the number of friends that live nearby.

- Apt. A has 1 friend nearby and is 1,200 ft ${ }^{2}$
- Apts that are larger and/or have more friends $\succ A$
- Apts that are smaller and/or have fewer friends $\prec A$

Indifference Curves: Example

Example:

- Apt. A has 1 friend nearby and is $1,200 f t^{2}$
- B has more friends but less $f t^{2}$

Indifference Curves: Example

Example:

- Apt. A has 1 friend nearby and is $1,200 f t^{2}$
- B has more friends but less $f t^{2}$
- Chas still more friends but less $f t^{2}$

Indifference Curves: Example

Example:

- Apt. A has 1 friend nearby and is $1,200 f t^{2}$
- B has more friends but less $f t^{2}$
- Chas still more friends but less $f t^{2}$
- $A \sim B \sim C$: on same indifference curve

Indifference Curves: Example

- Indifferent between all apartments on the same curve

Indifference Curves: Example

- Indifferent between all apartments on the same curve
- Apts above curve are preferred over apts on curve
- $D \succ A \sim B \sim C$
- On a higher curve

Indifference Curves: Example

- Indifferent between all apartments on the same curve
- Apts above curve are preferred over apts on curve
- $D \succ A \sim B \sim C$
- On a higher curve
- Apts below curve are less preferred than apts on curve
- $E \prec A \sim B \sim C$
- On a lower curve

Curves Never Cross!

- Indifference curves can never cross: preferences are transitive
- If I prefer $A \succ B$, and $B \succ C$, I must prefer $A \succ C$

Curves Never Cross!

- Indifference curves can never cross: preferences are transitive
- If I prefer $A \succ B$, and $B \succ C$, I must prefer $A \succ C$
- Suppose two curves crossed:
- $A \sim B$
- $B \sim C$
- But $C \succ B$!
- Doesn't make sense (not transitive)!

Marginal Rate of Substitution

Marginal Rate of Substitution I

- If I find another apt with 1 fewer friend nearby, how many more $f t^{2}$ would you need to keep you satisfied?

Marginal Rate of Substitution I

- If I find another apt with 1 fewer friend nearby, how many more f^{2} would you need to keep you satisfied?
- Marginal Rate of Substitution (MRS): rate at which you trade away one good for more of the other and remain indifferent
- Think of this as the relative value you place on good x :

$$
\begin{aligned}
& \text { "I am willing to give up }(M R S) \\
& \text { units of } y \text { to consume } 1 \text { more unit } \\
& \text { of } x \text { and stay satisfied." }
\end{aligned}
$$

Marginal Rate of Substitution II

Marginal Rate of Substitution II

- MRS = slope of the indifference curve

$$
M R S_{x, y}=-\frac{\Delta y}{\Delta x}=\frac{r i s e}{r u n}
$$

- Amount of y given up for 1 more x
- Note: slope (MRS) changes along the curve!

MRS vs. Budget Constraint Slope

- Budget constraint (slope) from before measured the market's tradeoff between x and y based on market prices
- MRS here measures your personal evaluation of x vs. y based on your preferences
- Foreshadowing: what if these two rates are different? Are you truly optimizing?

Utility

So Where are the Numbers?

- Long ago (1890s), utility considered a real, measurable, cardinal scale ${ }^{\dagger}$
- Utility thought to be lurking in people's brains
- Could be understood from first principles: calories, water, warmth,
 etc
- Obvious problems
† "Neuroeconomics" \& cognitive scientists are re-attempting a scientific approach to measure utility

Utility Functions?

- More plausibly infer people's preferences from their actions!
- "Actions speak louder than words"
- Principle of Revealed Preference: if a person chooses x over y, and both are affordable, then they must prefer $x \succeq y$
- Flawless? Of course not. But extremely useful approximation!

- People tend not to leave money on the table

Utility Functions!

- A utility function $u(\cdot)^{\dagger}$ represents preference relations (\succ, \prec, \sim)
- Assign utility numbers to bundles, such that, for any bundles a and b :

$$
a \succ b \Longleftrightarrow u(a)>u(b)
$$

${ }^{\dagger}$ The \cdot is a placeholder for whatever goods we are considering (e.g. x, y, burritos, lattes, etc)

Utility Functions, Pural I

- Let $u(\cdot)$ assign each bundle a utility of:

Example: Imagine three alternative bundles of (x, y) :

$$
\begin{aligned}
a & =(1,2) \\
b & =(2,2) \\
c & =(4,3)
\end{aligned}
$$

$$
\begin{gathered}
u(\cdot) \\
u(a)=1 \\
u(b)=2 \\
u(c)=3
\end{gathered}
$$

- Does this mean that bundle c is 3 times the utility of a ?

Utility Functions, Pural II

- Now consider a $2^{\text {nd }}$ function $v(\cdot)$:

Example: Imagine three alternative bundles of (x, y) :

$$
\begin{aligned}
a & =(1,2) \\
b & =(2,2) \\
c & =(4,3)
\end{aligned}
$$

$$
\begin{array}{cc}
u(\cdot) & v(\cdot) \\
u(a)=1 & v(a)=3 \\
u(b)=2 & v(b)=5 \\
u(c)=3 & v(c)=7
\end{array}
$$

Utility Functions, Pural IIII

- Utility numbers have an ordinal meaning only, not cardinal
- Both are valid utility functions: ${ }^{\dagger}$
- $u(c)>u(b)>u(a) \nabla$
- $v(c)>v(b)>v(a) \nabla$
- because $c \succ b \succ a$
- Only the ranking of utility numbers matters!

[^0]
Utility Functions and Indifference Curves I

- Two tools to represent preferences: indifference curves and utility functions
- Indifference curve: all equally preferred bundles \Longleftrightarrow same utility level
- Each indifference curve represents one level (or contour) of utility surface (function)

Utility Functions and Indifference Curves II

3-D Utility Function: $u(x, y)=\sqrt{x y}$
2-D Indifference Curve Contours: $y=\frac{u^{2}}{x}$

Marginal Utility

MRS and Marginal Utility I

- Recall: marginal rate of substitution $M R S_{x, y}$ is slope of the indifference curve
- Amount of y given up for 1 more x
- How to calculate MRS?
- Recall it changes (not a straight line)!
- We can calculate it using something from the utility function

MRS and Marginal Utility II

- Marginal utility: change in utility from a marginal increase in consumption

MRS and Marginal Utility II

- Marginal utility: change in utility from a marginal increase in consumption

Marginal utility of x :

$M U_{x}=\frac{\Delta u(x, y)}{\Delta x}$

MRS and Marginal Utility II

- Marginal utility: change in utility from a marginal increase in consumption

Marginal utility of x :

$$
M U_{x}=\frac{\Delta u(x, y)}{\Delta x}
$$

Marginal utility of y :

$M U_{y}=\frac{\Delta u(x, y)}{\Delta y}$

MRS and Marginal Utility II

- Marginal utility: change in utility from a marginal increase in consumption
- Math (calculus): "marginal"
 "derivative with respect to"

$$
M U_{x}=\frac{\partial u(x, y)}{\partial x}
$$

- I will always derive marginal utility functions for you

MRS and Marginal Utility: Example

Example: For an example utility function:

$$
u(x, y)=x^{2}+y^{3}
$$

- Marginal utility of $x: \quad M U_{x}=2 x$
- Marginal utility of $y: \quad M U_{y}=3 y^{2}$
- Again, I will always derive marginal utility functions for you

MRS Equation and Marginal Utility

- Relationship between $M U$ and $M R S$:

$$
\underbrace{\frac{\Delta y}{\Delta x}}_{M R S}=-\frac{M U_{x}}{M U_{y}}
$$

- See proof in today's class notes
"I am willing to give up $\frac{M U_{x}}{M U_{y}}$ units of y to consume 1 more unit of x and stay satisfied."

Important Insights About Value

"I am willing to give up $\frac{M U_{x}}{M U_{y}}$ units of y to consume 1 more unit of x and stay satisfied."

- We can't measure $M U$'s, but we can measure $M R S_{x, y}$ and infer the ratio of MU's!
- Example: if $M R S_{x, y}=5$, a unit of good x gives 5 times the marginal utility of good y at the margin

Important Insights About Value

- Value is subjective
- Each of us has our own preferences that determine our ends or objectives
- Choice is forward looking: a comparison of your expectations about opportunities
- Preferences are not comparable across individuals
- Only individuals know what they give up at the moment of choice

Important Insights About Value

- Value inherently comes from the fact that we must make tradeoffs
- Making one choice means having to give up pursuing others!
- The choice we pursue at the moment must be worth the sacrifice of others! (i.e. highest marginal utility)

Diminishing Marginal Utility

The Law of Diminishing Marginal Utility: each marginal unit of a good consumed tends to provide less marginal utility than the previous unit, all else equal

- As you consume more x :
- $\downarrow M U_{x}$
- $\downarrow M R S_{x, y}$: willing to give up fewer units of y for x

Special Case: Substitutes

Example: Consider 1-Liter bottles of coke and 2-Liter bottles of coke

- Always willing to substitute between Two 1-L bottles for One 2-L bottle
- Perfect substitutes: goods that can be substituted at same fixed rate and yield same utility
- $M R S_{1 L, 2 L}=-0.5$ (a constant!)

Special Case: Complements

Example: Consider hot dogs and hot dog buns

- Always consume together in fixed proportions (in this case, 1 for 1)
- Perfect complements: goods that can be consumed together in same fixed proportion and yield same utility
- $M R S_{H, B}=$?

Cobb-Douglas Utility Functions

- A very common functional form in economics is Cobb-Douglas

$$
u(x, y)=x^{a} y^{b}
$$

- Extremely useful, you will see it often!
- Lots of nice, useful properties (we'll see later)
- See the appendix in today's class page

Practice

Example: Suppose you can consume apples (a) and broccoli (b), and earn utility according to:

$$
\begin{aligned}
u(a, b) & =2 a b \\
M U_{a} & =2 b \\
M U_{b} & =2 a
\end{aligned}
$$

1. Put a on the horizontal axis and b on the vertical axis. Write an equation for $M R S_{a, b}$.
2. Would you prefer a bundle of $(1,4)$ or $(2,2)$?
3. Suppose you are currently consuming 1 apple and 4 broccoli. a. How many units of broccoli are you willing to give up to eat 1 more apple and remain indifferent? b. How much more utility would you get if you were to eat 1 more apple?
4. Repeat question 3, but for when you are consuming 2 of each good.

[^0]: ${ }^{\dagger}$ See the Mathematical Appendix in Today's Class Page for why.

