1.6 - Income \& Substitution Effects

 ECON 306 • Microeconomic Analysis • Spring 2023 Ryan SafnerAssociate Professor of Economics
/ safner@hood.edu
© ryansafner/microS23
© microS23.classes.ryansafner.com

Outline

The (Own) Price Effect
(Real) Income Effect
Substitution Effect
Putting the Effects Together
What About Inferior Goods?
On to Demand Curves

A Demand Function (Again)

- A consumer's demand (for good x) depends on current prices \& income:

$$
q_{x}^{D}=q_{x}^{D}\left(m, p_{x}, p_{y}\right)
$$

- How does demand (for x) change?

1. Income effects $\left(\frac{\Delta q_{x}^{D}}{\Delta m}\right)$: how q_{x}^{D} changes with changes in income
2. Cross-price effects $\left(\frac{\Delta q_{x}^{D}}{\Delta p_{y}}\right)$: how q_{x}^{D} changes with changes in prices of other goods (e.g. y)
3. (Own) Price effects $\left(\frac{\Delta q_{x}^{D}}{\Delta p_{x}}\right)$: how q_{x}^{D} changes with changes in price (of x)

The (Own) Price Effect

The (Own) Price Effect

- Price effect: change in optimal
consumption of a good associated with a change in its price, holding income and other prices constant

$$
\frac{\Delta q_{x}^{D}}{\Delta p_{x}}<0
$$

The law of demand: as the price of a good rises, people will tend to buy less of that good (and vice versa)

- i.e. the price effect is negative!

Decomposing the Price Effect

The price effect (law of demand) is actually the net result of two effects

1. (Real) income effect: change in consumption due to change in real purchasing power
2. Substitution effect: change in consumption due to change in relative prices

$$
\text { Price Effect }=\text { Real income effect }+ \text { Substitution Effect }
$$

(Real) Income Effect

(Real) Income Effect: Demonstration

- Suppose there is only 1 good to consume, x. You have a $\$ 100$ income, and the price of x is $\$ 10$. You consume 10 units of x
- Suppose the price of x rises to $\$ 20$. You now consume 5 units of x.
- This is the real income effect

(Real) Income Effect: Demonstration

- Real income effect: your consumption mix changes because of the change in the price of x changes your real income or purchasing power (the amount of goods you can buy)
- Note your actual(nominal) income (\$100) never changed!

(Real) Income Effect: Size

- The size of the income effect depends on how large a portion of your budget you spend on the good
- Large-budget items:
- e.g. Housing/apartment rent, car prices
- Price increase/decreases makes you much poorer/wealthier

(Real) Income Effect: Size

- The size of the income effect depends on how large a portion of your budget you spend on the good
- Small-budget items:
- e.g. pencils, toothpicks, candy
- Price changes don't have much of an effect on your wealth or change your behavior much

Substitution Effect

Substitution Effect: Demonstration

- Suppose there are 1000 's of goods, none of them a major part of your budget
- So real income effect is insignificant
- Suppose the price of good x increases
- You would consume less of x relative to other goods because x is now relatively more expensive
- That's the substitution effect

Substitution Effect: Demonstration

- Substitution effect: consumption mix changes because of a change in relative prices
- Buy more of the (now) relatively cheaper items
- Buy less of the (now) relatively more
 expensive item (x)

Putting the Effects Together

Putting the Effects Together

- Real income effect: change in consumption due to change in real purchasing power
- Could go in different directions: positive (normal goods) or negative (inferior goods)
- Higher price of x means you must buy less x, y, or both (depending on your preferences)
- Substitution effect: change in consumption due to change in relative prices
- If x gets more expensive relative to y, consume $\downarrow x$ (and $\uparrow y$)
- Always the same direction: (\downarrow relatively expensive goods, \uparrow relatively cheaper goods)
- This is why demand curves slope downwards!

$$
\text { Price Effect }=\text { Real income effect }+ \text { Substitution Effect }
$$

Real Income and Substitution Effects, Graphically I

- Original optimal consumption (A)

Optima with $u(x, y)=x^{0.5} y^{0.5}, m=24, p_{y}=1$

Real Income and Substitution Effects, Graphically I

- Original optimal consumption (A)
- (Total) price effect: $A \rightarrow C$
- Let's decompose this into the two effects

Optima with $u(x, y)=x^{0.5} y^{0.5}, m=24, p_{y}=1$

Real Income and Substitution Effects, Graphically II

- Substitution effect: what you would choose under the new exchange rate to remain indifferent as before the change

Optima with $u(x, y)=x^{0.5} y^{0.5}, m=24, p_{y}=1$

Real Income and Substitution Effects, Graphically II

- Substitution effect: what you would choose under the new exchange rate to remain indifferent as before the change
- Graphically: shift new budget constraint inwards until tangent with old indifference curve
- $A \rightarrow B$ on same I.C. $(\downarrow x, \uparrow y)$
- Note: Point B must be a different point on the original curve! Why?

Optima with $u(x, y)=x^{0.5} y^{0.5}, m=24, p_{y}=1$

Real Income and Substitution Effects, Graphically III

- (Real) income effect: change in consumption due to the change in purchasing power from the price change

Optima with $u(x, y)=x^{0.5} y^{0.5}, m=24, p_{y}=1$

Real Income and Substitution Effects, Graphically III

- (Real) income effect: change in consumption due to the change in purchasing power from the price change
- $B \rightarrow C$ to new budget constraint (can buy less of x and/or y)

Optima with $u(x, y)=x^{0.5} y^{0.5}, m=24, p_{y}=1$

Real Income and Substitution Effects, Graphically IV

- Original optimal consumption (A)

Optima with $u(x, y)=x^{0.5} y^{0.5}, m=24, p_{y}=1$

Real Income and Substitution Effects, Graphically IV

- Original optimal consumption (A)
- Price of x rises, new optimal consumption at (C)

Optima with $u(x, y)=x^{0.5} y^{0.5}, m=24, p_{y}=1$

Real Income and Substitution Effects, Graphically IV

- Original optimal consumption (A)
- Price of x rises, new optimal consumption at (C)
- Substitution effect: $A \rightarrow B$ on same I.C. $(\downarrow$ more expensive x and $\uparrow y)$

Optima with $u(x, y)=x^{0.5} y^{0.5}, m=24, p_{y}=1$

Real Income and Substitution Effects, Graphically IV

- Original optimal consumption (A)
- Price of x rises, new optimal consumption at (C)
- Sulbstitution effect: $A \rightarrow B$ on same I.C. (\downarrow more expensive x and $\uparrow y)$
- (Real) income effect: $B \rightarrow C$ to new budget constraint (can buy less of x and/or y)

Optima with $u(x, y)=x^{0.5} y^{0.5}, m=24, p_{y}=1$

Real Income and Substitution Effects, Graphically IV

- Original optimal consumption (A)
- Price of x rises, new optimal consumption at (C)
- Substitution effect: $A \rightarrow B$ on same I.C. (\downarrow more expensive x and $\uparrow y$)
- (Real) income effect: $B \rightarrow C$ to new budget constraint (can buy less of x and/or y)
- (Total) price effect: $A \rightarrow C$

Optima with $u(x, y)=x^{0.5} y^{0.5}, m=24, p_{y}=1$

Change in Consumption From an Increase in Price
Normal Good

What About Inferior Goods?

Inferior Goods, Graphically I

- Original optimal consumption (A)

Optima with $\mathrm{u}(\mathrm{x}, \mathrm{y})=\mathrm{x}^{0.5} \mathrm{y}^{0.5}, \mathrm{~m}=24, \mathrm{p}_{\mathrm{y}}=1$

Inferior Goods, Graphically I

- Original optimal consumption (A)
- (Total) price effect: $A \rightarrow C$
- Let's decompose this into the two effects

Optima with $u(x, y)=x^{0.5} y^{0.5}, m=24, p_{y}=1$

Inferior Goods, Graphically II

- Substitution effect: what you would choose under the new exchange rate to remain indifferent as before the change

Optima with $u(x, y)=x^{0.5} y^{0.5}, m=24, p_{y}=1$

Inferior Goods, Graphically II

- Substitution effect: what you would choose under the new exchange rate to remain indifferent as before the change
- Graphically: shift new budget constraint inwards until tangent with old indifference curve
- $A \rightarrow B$ on same I.C. $(\downarrow x, \uparrow y)$

Optima with $u(x, y)=x^{0.5} y^{0.5}, m=24, p_{y}=1$

Inferior Goods, Graphically III

- (Real) income effect: change in consumption due to the change in purchasing power from the price change

Optima with $u(x, y)=x^{0.5} y^{0.5}, m=24, p_{y}=1$

Inferior Goods, Graphically III

- (Real) income effect: change in consumption due to the change in purchasing power from the price change
- $B \rightarrow C$ to new budget constraint (can buy less of x and/or y)

Optima with $u(x, y)=x^{0.5} y^{0.5}, m=24, p_{y}=1$

Inferior Goods, Graphically IV

- Original optimal consumption (A)

Optima with $u(x, y)=x^{0.5} y^{0.5}, m=24, p_{y}=1$

Inferior Goods, Graphically IV

- Original optimal consumption (A)
- Price of x rises, new optimal consumption at (C)

Optima with $u(x, y)=x^{0.5} y^{0.5}, m=24, p_{y}=1$

Inferior Goods, Graphically IV

- Original optimal consumption (A)
- Price of x rises, new optimal consumption at (C)
- Sulbstitution effect: $A \rightarrow B$ on same I.C. $(\downarrow$ more expensive x and $\uparrow y)$

Optima with $u(x, y)=x^{0.5} y^{0.5}, m=24, p_{y}=1$

Inferior Goods, Graphically IV

- Original optimal consumption (A)
- Price of x rises, new optimal consumption at (C)
- Sulbstitution effect: $A \rightarrow B$ on same I.C. $(\downarrow$ more expensive x and $\uparrow y)$
- (Real) income effect: $B \rightarrow C$ to new budget constraint (can buy less x and/or y)

Optima with $u(x, y)=x^{0.5} y^{0.5}, m=24, p_{y}=1$

Inferior Goods, Graphically IV

- Original optimal consumption (A)
- Price of x rises, new optimal consumption at (C)
- Sulbstitution effect: $A \rightarrow B$ on same I.C. $(\downarrow$ more expensive x and $\uparrow y)$
- (Real) income effect: $B \rightarrow C$ to new budget constraint (can buy less x and/or y)
- (Total) price effect: $A \rightarrow C$

Change in Consumption From an Increase in Price
Inferior Good

Violating the Law of Demand

Example: What would it take to violate the law of demand?

A Giffen Good

- Giffen good: theoretical good that violates law of demand
(negative) real income effect > substitution effect

1. Few substitutes (small substitution effect)
2. An inferior good (negative real income effect)

3. A large portion of income spent on it (large real income effect)

- Price increase (decrease) causes person to buy more (less)

Recap: Real Income and Substitution Effects

Price Effect $=$ Real income effect + Substitution Effect

- Substitution effect: is always in the direction of the cheaper good
- Real Income effect: can be positive (normal) or negative (inferior)
- Law of Demand/Demand curves slope downwards (Price effect) mostly because of the substitution effect
- Even (inferior) goods with negative real income effects overpowered by substitution effect
- Theoretical Giffen good exception: negative R.I.E. > S.E.

On To Demand Curves

Deriving a Demand Curve Graphically

Demand function: $\frac{m}{2 p}$; Inverse Demand function: $p=\frac{m}{2 q}$

- Demand curve for x relates optimal consumption of x ("quantity") as price of x changes
- At $p_{x}=4$, consumer buys $2 x$

Deriving a Demand Curve Graphically

Demand function: $\frac{m}{2 p}$; Inverse Demand function: $p=\frac{m}{2 q}$

- Demand curve for x relates optimal consumption of x ("quantity") as price of x changes
- At $p_{x}=4$, consumer buys $2 x$; at $p_{x}=2$, consumer buys $5 x$

Deriving a Demand Curve Graphically

- Demand curve for x relates optimal consumption of x ("quantity") as price of x changes
- At $p_{x}=4$, consumer buys $2 x$; at $p_{x}=2$, consumer buys $5 x$; at $p_{x}=1$, consumer buys $10 x$

Deriving a Demand Curve Graphically

- Demand curve for x relates optimal consumption of x ("quantity") as price of x changes
- At $p_{x}=4$, consumer buys $2 x$; at $p_{x}=2$, consumer buys $5 x$; at $p_{x}=1$, consumer buys $10 x$

From Individual Demand to Market Demand

- Note so far we have been talking about an individual person's demand
- In principles, you learned about the entire market demand

From Individual Demand to Market Demand

- Note so far we have been talking about an individual person's demand
- In principles, you learned about the entire market demand
- This is simply the sum of all individuals' demands

Demand Schedule (For Individual Or Market)

- Demand schedule expresses the quantity of good a person(s) would be willing to buy $\left(q_{D}\right)$ at any given price $\left(p_{x}\right)$
- Holding constant all other prices $\left(p_{y}\right)$ and income (m) ! ("ceterus paribus")
- Note: each of these is a consumer's optimum at a given price!

price	quantity
10	0
9	1
8	2
7	3
6	4
5	5
4	6
3	7
2	8
1	9
0	10

Demand Curve

- Demand curve graphically represents the demand schedule
- Also measures a person's maximum willingness to pay (WTP) for a given quantity
- Law of Demand (price effect) \Longrightarrow demand curves always slope downwards

Demand Function

- Demand function relates quantity to price

Example:

$$
q=10-p
$$

- Not graphable (wrong axes)!

Inverse Demand Function

- Inverse demand function relates price to quantity
- Take demand function and solve for p

Example:

$$
p=10-q
$$

- Graphable (price on vertical axis)!

Inverse Demand Function

- Inverse demand function relates price to quantity
- Take demand function and solve for p

Example:

$$
p=10-q
$$

- Vertical intercept ("Choke price"): price where $q_{D}=0$ ($\$ 10$), just high enough to discourage any purchases

Inverse Demand Function

- Read two ways:
- Horizontally: at any given price, how many units person wants to buy
- Vertically: at any given quantity, the maximum willingness to pay (WTP) for that quantity
- This way will be very useful later

Shifts in Demand I

- Note a simple (inverse) demand function only relates (own) price and quantity

$$
\begin{aligned}
& \text { Example: } q=10-p \text { or } \\
& p=10-q
\end{aligned}
$$

- What about all the other "determinants of demand" like income and other prices?

- They are captured in the vertical intorront (rhoko nrira)l

Shifts in Demand II

- A change in one of the "determinants of demand" will shift demand curve!

1. Change in income m
2. Change in price of other goods p_{y}
3. Change in preferences or expectations about good x

- Shows up in (inverse) demand function by a change in intercept (choke price)!
- See my Visualizing Demand Shifters

