4.1 - Modeling Market Power

ECON 306 • Microeconomic Analysis • Spring 2023 Ryan Safner
Associate Professor of Economics
Asafner@hood.edu
© ryansafner/microS23
© microS23.classes.ryansafner.com

Outline

Market Power
Marginal Revenue
Price Elasticity \& Price Mark Up
Profit Maximization Rules, Redux

Market Power

Imperfect Competition

Monopoly

Perfect Competition

Imperfect Competition

Imperfect Competition

$\leftarrow-$ "Imperfect Competition" | P- $\leftarrow-$ Perfect |
| :--- |
| Monopoly |
| Competition |

Less Competitive

Oligopoly

Imperfect Competition

Competitive Markets, Recap

- For competitive markets, modeled firms as "price-takers": so many of them selling identical products, no one could affect price p
- p^{\star} must be market price, but choose q^{\star} to maximize π
- (Long-run) Equilibrium: Marginal cost pricing for all firms, which is allocatively efficient for society

- $p=M C$
- $M S B=M S C$
- Over long-run, free entry and exit push prices to equal (average \& marginal) costs and pushed economic profits to zero

Market Power

"People of the same trade seldom meet together, even for merriment and diversion, but the conversation ends in a conspiracy against the public, or in some contrivance to raise prices. It is impossible indeed to prevent such meetings, by any law which either could be executed, or would be consistent with liberty and justice. But though the law cannot hinder people of the same trade from sometimes assembling together, it ought to do nothing to facilitate such assemblies; much less to render them necessary." (Book I, Chapter X Part II).

Adam Smith

Market Power vs. Competition

- All sellers would like to raise prices and extract more revenue from consumers
- Competition from other sellers (and potential entrants) drives prices to equal costs \& economic profits to zero
- Firm in competitive market raising $p>M C(q)$ would lose all of its customers!
- Market power: ability to raise $p>M C(q)$ (and not lose all customers)

Perfectly competitive firms

 when economic profit > 0

Market Power vs. Competition

"The pretence that [monopolies] are necessary for the better government of the trade, is without any foundation. The real and effectual discipline which is exercised over a [producer], is not that of his [monopoly], but that of his customers. It is the fear of losing their employment which restrains his frauds and corrects his negligence. An exclusive [monopoly] necessarily weakens the force of this discipline," (Book I, Chapter X Part II).

Adam Smith

Modeling Firms with Market Power

- Firms with market power behave differently than firms in a competitive market
- Today: understanding how to model that different behavior
- Start with simple assumption of a single seller: monopoly (easiest to model)

- Next class:

- causes of market power
- consequences of market power

Modeling Firms with Market Power

- A firm with market power is a "price-searcher"
- Firms with market power search for both (q^{\star}, p^{\star}) that maximizes π
- With a monopoly model, we can safely ignore the effects that other sellers have on one firm's behavior
- A convenient starting point
- Later, will need game theory to deal with other firms' interactions

The Monopolist's Problem

- The monopolist's profit maximization problem:

1. Choose: < output and price: $\left(q^{\star}, p^{\star}\right)$ >
2. In order to maximize: < profits: π >

Marginal Revenues

Market Power and Revenues I

Clintarzoll

Jack Stratton
How I Made \$290,000 Selling Books

Format: Paperback

Only 1 left in stock - order soon.

- Firms are constrained by relationship between quantity and price that consumers are willing to pay

Market Power and Revenues I

- Firms are constrained by relationship between quantity and price that consumers are willing to pay
- Market (inverse) demand describes maximum price consumers are willing to pay for a given quantity
- Implications:
- Even a monopoly can't set a price "as high as it wants"
- Even a monopoly can still earn losses!

Market Power and Revenues II

- As firm chooses to produce more q, must lower the price on all units to sell them

Market Power and Revenues II

- As firm chooses to produce more q, must lower the price on all units to sell them
- Price effect $(q \Delta p)$: lost revenue from lowering price on all sales $(\$ 2 \times-2)$

Market Power and Revenues II

- As firm chooses to produce more q, must lower the price on all units to sell them
- Price effect $(q \Delta p)$: lost revenue from lowering price on all sales $(\$ 2 \times-2)$
- Output effect $(p \Delta q)$: gained revenue from increase in sales $(\$ 14 \times 1)$

Market Power and Revenues II

- As firm chooses to produce more q, must lower the price on all units to sell them
- Price effect $(q \Delta p)$: lost revenue from lowering price on all sales $(\$ 2 \times-2)$
- Output effect $(p \Delta q)$: gained revenue from increase in sales $(\$ 14 \times 1)$

\mathbf{q}	\mathbf{p}	$\mathbf{R}(\mathbf{q})$
Change		
2	$\$ 16$	$\$ 32$
3	$\$ 14$	$\$ 42$

Marginal Revenue I

- If a firm increases output, Δq, revenues would change by:

$$
\Delta R(q)=p \Delta q+q \Delta p
$$

- Output effect: increases number of units sold (Δq) times price p per unit
- Price effect: lowers price per unit (Δp) on all units sold (q)
- Divide both sides by Δq to get Marginal Revenue, $M R(q)$:

$$
\frac{\Delta R(q)}{\Delta q}=M R(q)=p+\frac{\Delta p}{\Delta q} q
$$

- Compare: demand for a competitive firm is perfectly elastic: $\frac{\Delta p}{\Delta q}=0$, so we saw $M R(q)=p$!

Marginal Revenue II

- If we have a linear inverse demand function of the form

$$
p=a+b q
$$

- a is the choke price (intercept)
- b is the slope
- Marginal revenue again is defined as:

$$
M R(q)=p+\frac{\Delta p}{\Delta q} q
$$

- Recognize that $\frac{\Delta p}{\Delta q}=\left(\frac{r i s e}{r u n}\right)$ is the slope, b,

$$
\begin{aligned}
M R(q) & =p+(b) q \\
M R(q) & =(a+b q)+b q \\
\operatorname{MR}(\mathbf{q}) & =\mathbf{a}+\mathbf{2 b q}
\end{aligned}
$$

Marginal Revenue III

$$
\begin{aligned}
p(q) & =a+b q \\
M R(q) & =a+2 b q
\end{aligned}
$$

- Marginal revenue starts at same intercept as Demand (a) with twice the slope $(2 b)$
- Don't forget the slopes (b) are always negative!

Marginal Revenue: Example

Example: Suppose the market demand is given by:

$$
q=12.5-0.25 p
$$

1. Find the function for a monopolist's marginal revenue curve.
2. Calculate the monopolist's marginal revenue if the firm produces 6 units, and 7 units.

Price Elasticity \& Price Mark Up

Revenues and Price Elasticity of Demand

Demand Price Elasticity	$\operatorname{MR}(\mathbf{q})$	$\mathrm{R}(\mathbf{q})$
$\|\epsilon\|>1$ Elastic	Positive	Increasing
$\|\epsilon\|=1$ Unity	0	Maximized
$\|\epsilon\|<1$ Inelastic	Negative	Decreasing

- Strong relationship between price elasticity of demand and revenues
- Monopolists only produce where demand is elastic, with positive MR(q)!
- See appendix in today's appendix for a proof

Market Power and Mark Up

- Perfect competition: $p=M C(q)$ (allocatively efficient)
- Market power defined as firm(s)' ability to mark up $p>M C(q)$
- (Even a monopolist's market power is constrained by market demand!)
- Size of markup depends on price elasticity of demand
- \downarrow price elasticity: \uparrow markup
i.e. the less responsive to prices
consumers are, the higher the price the firm can charge

The Lerner Index and Inverse Elasticity Rule I

- Lerner Index measures market power as \% of firm's price that is markup above $M C(q)$

$$
L=\frac{p-M C(q)}{p}=-\frac{1}{\epsilon}
$$

- i.e. $L \times 100 \%$ of firm's price is markup
- $L=0 \Longrightarrow$ perfect competition
- 0% of price is markup, since

$$
p=M C(q)
$$

- As $L \rightarrow 1 \Longrightarrow$ more market power

The Lerner Index and Inverse Elasticity Rule II

The more (less) elastic a good, the less (more) the optimal markup: $L=\frac{p-M C(q)}{p}=-\frac{1}{\epsilon}$

Demand Less Elastic at p^{*}

Demand More Elastic at p^{*}

Profit Maximization Rules, Redux

Visualizing Total Profit As R(q)-C(q)

- $\pi(q)=R(q)-C(q)$

Visualizing Total Profit As R(q)-C(q)

- $\pi(q)=R(q)-C(q)$

Visualizing Total Profit As R(q)-C(q)

- $\pi(q)=R(q)-C(q)$
- Graph: find q^{*} to $\max \pi \Longrightarrow q^{*}$ where max distance between $R(q)$ and $C(q)$

Visualizing Total Profit As R(q)-C(q)

- $\pi(q)=R(q)-C(q)$
- Graph: find q^{*} to $\max \pi \Longrightarrow q^{*}$ where max distance between $R(q)$ and $C(q)$
- Slopes must be equal:

$$
M R(q)=M C(q)
$$

Visualizing Total Profit As R(q)-C(q)

- $\pi(q)=R(q)-C(q)$
- Graph: find q^{*} to $\max \pi \Longrightarrow q^{*}$ where max distance between $R(q)$ and $C(q)$
- Slopes must be equal:

$$
M R(q)=M C(q)
$$

- At $q^{*}=5$:
- $R(q)=75$
- $C(q)=40$
- $\pi(q)=35$

Visualizing Marginal Profit As MR(q)-MC(q)

- At low output $q<q^{*}$, can increase π by producing more
- $M R(q)>M C(q)$

Visualizing Marginal Profit As MR(q)-MC(q)

- At high output $q>q^{*}$, can increase π by producing less
- $M R(q)<M C(q)$

Visualizing Marginal Profit As MR(q)-MC(q)

- π is maximized where
$M R(q)=M C(q)$

Profit-Maximizing Price and Quantity (Graph)

- Profit-maximizing quantity is always q^{\star} where $M R(q)=M C(q)$

Profit-Maximizing Price and Quantity (Graph)

- Profit-maximizing quantity is always q^{\star} where $M R(q)=M C(q)$
- But monopolist faces entire market demand
- Can charge as high p^{\star} as consumers are WTP Market Demand

Profit-Maximizing Price and Quantity (Graph)

- Profit-maximizing quantity is always q^{\star} where $M R(q)=M C(q)$
- But monopolist faces entire market demand
- Can charge as high p^{\star} as consumers are WTP Market Demand
- Break even price $p=A C(q)_{\text {min }}$

Profit-Maximizing Price and Quantity (Graph)

- Profit-maximizing quantity is always q^{\star} where $M R(q)=M C(q)$
- But monopolist faces entire market demand
- Can charge as high p^{\star} as consumers are WTP Market Demand
- Break even price $p=A C(q)_{\text {min }}$
- Shut-down price $p=A V C(q)_{\min }$

Summing Up Monopolist's Supply Decisions

1. Produce the optimal amount of output q^{*} where $M R(q)=M C(q)$
2. Raise price to maximum consumers are WTP: $p^{*}=\operatorname{Demand}\left(q^{*}\right)$
3. Calculate profit with average cost: $\pi=[p-A C(q)] q$
4. Shut down in the short run if $p<A V C(q)$

- Minimum of AVC curve where $M C(q)=A V C(q)$

5. Exit in the long run if $p<A C(q)$

- Minimum of AC curve where $M C(q)=A C(q)$

The Profit Maximizing Quantity \& Price: Example

Example: Consider the market for iPhones. Suppose Apple's costs are:

$$
\begin{aligned}
C(q) & =2.5 q^{2}+25,000 \\
M C(q) & =5 q
\end{aligned}
$$

The demand for iPhones is given by (quantity is in millions of iPhones):

$$
q=300-0.2 p
$$

1. Find Apple's profit-maximizing quantity and price.
2. How much total profit does Apple earn?
3. How much of Apple's price is markup over (marginal) cost?
4. What is the price elasticity of demand at Apple's profit-maximizing output?
