Exponents & Logarithms

Exponents are defined as:

There are some common rules for exponents, assuming x and y are real numbers, m and n are integers, and a and b are rational:

  1. xn=1xn
    • e.g. x3=1x3
  2. x1n=xn
    • e.g. x12=x
  3. x(mn)=(x1n)m
    • e.g. 843=(813)4=24=16
  4. xaxb=xa+b
    • e.g. x2x3=x5
  5. xaxb=xab
    • e.g. x2x3=x1=1x
  6. (xy)a=xaya
    • e.g. (xy)2=x2y2
  7. (xy)a=xaya
    • e.g. (xy)2=x2y2

Logarithms are the exponents in the expressions above, the inverse of exponentiation

We often use the natural logarithm (ln) with base e=2.718... in many math, statistics, and economic applications

There are a number of highly useful rules for natural logs:

  1. ln(xy)=ln(x)+ln(y)
    • e.g. ln(23)=ln(2)+ln(3)
  2. ln(xy)=ln(x)ln(y)
    • e.g. ln(23)=ln(2)ln(3)
  3. ln(xa)=aln(x)
    • e.g. ln(x2)=2ln(x)